Social network analysis as an analytical archetype of R&D national networks: Case study in culture collections of Brazil and Japan

Authors

  • Fabius Abrahão Torreão Esteves Fiocruz – Oswaldo Cruz Foundation
  • Claude Pirmez Instituto Oswaldo Cruz
  • Manuela da Silva Instituto Oswaldo Cruz
  • Carla Torreão Esteves Escola Nacional de Saúde Pública, Fiocruz
  • Andréa Torreão Esteves Escola Nacional de Saúde Pública, Fiocruz
  • Roberto Pierre Chagnon Fiocruz – Oswaldo Cruz Foundation
  • Elton Fernandes Federal University of Rio de Janeiro - COPPE/UFRJ

DOI:

https://doi.org/10.18533/rss.v1i5.35

Keywords:

Social network analysis, Analytical archetype, R&D National Network, Culture Collections, Brazil

Abstract

The lack of analytical mechanisms of R&D national networks is a significant problem for policy makers. This paper presents an analytical archetype for performance evaluation of national co-authoring networks based on Social Network Analysis parameters. The model evaluates paper co-authoring data of professionals responsible for culture collections in Brazil and Japan. Were identified professionals from the World Federation for Culture Collections data bank and co-authoring identified from international bibliographic databases. The Brazilian network is the focus of the analysis and the Japanese is the reference network. The Research and Development networks in culture collections are fundamental to the performance of the biotechnological innovation chain in areas such as health, agriculture and industry, and thus fundamental to emerging countries such as Brazil. This country has the fifth largest population in the world, being most of this population user of public health services and it has in the agribusiness one of its main sources of wealth. The model allows a performance evaluation of the networks and identifies improvement paths for the Brazilian network. SNA parameters combined with a reference network showed meaningful elements to the understanding of a R&D networks. This proved helpful for the strategic analysis of the network weaknesses and strengths. The model also proposes policy implications for the three analysis of sub-levels, namely cohesion, subgroups and centralization.

Author Biography

  • Elton Fernandes, Federal University of Rio de Janeiro - COPPE/UFRJ
    Production Engineering Program COPPE/UFRJ

References

Abbasi, A.; Altmann J. (2011). On the Correlation between Research Performance and Social Network Analysis Measures Applied to Research Collaboration Networks, 44th Hawaii International Conference on System Sciences, pp. 1-10.

Albert, R.; Barabási, A. (2002). Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 48-97.

Alvarez, R.R.; Da silva filho, S.J.M.; Proença, A. (2002). Redes simétricas e seu processo de definição de estratégia coletiva e modelo de governança: propostas no âmbito das redes de incubadoras e parques tecnológicos, Anais do XXII Simpósio de Gestão da Inovação Tecnológica, pp. 1-16.

Ando, K.; Ji T.E.; Funabiki, R.; Wu, L.; Thoetkiattikul, H.; Lee, J.; Techapattaraporn, B.; Changthavorn, T. (2014). Network of International Exchange of Microbes under the ACM (NIEMA) ─A transfer and exchange system of microbes for microbial resource centres for non-commercial purposes according to the CBD and the Nagoya Protocol, Microbiol. Cult. Coll. 30, 85-96.

Arranz, N.; Arroyabe J.C.F. (2007). Governance structures in R&D networks: an analysis in the European context, Technological Forecasting & Social Change 74, 645–662.

Balconi, M.; Breschi, S.; Lissoni, F. (2004). Networks of inventors and the role of academia: an exploration of Italian patent data, Research Policy 33, 127–145.

Balkan Economic Forum, [WWW Document] URL, http://www.balkaneconomicforum.org/wp/market-dependence-on-genetic-resources/, (accessed 4.27.15).

Beaver, D.B.; Rosen, R. (1979). Studies in scientific collaboration: part III: professionalization and the natural history of modern scientific co-authorship, Scientometrics 1, 231-245.

Burt, R.S. (1992). Structural holes: The Social Structure of Competition. Harvard University Press, Massachussets.

Callon, M. (1991).Techno-economic networks and irreversibility. In Law, J., A sociology of monsters: essays on power, technology and domination, London: Routledge, pp.132–165,

Callon, M. (1992). The dynamics of techno-economic networks. In Coombs R., Saviotti P., Walsh V., Technological change and company strategies economic and sociological perspectives, Academic Press, London, pp.72-102.

Canhos, V.P.; Manfio, G.P. (2000). Recursos Microbiológicos para Biotecnologia [WWW Document] URL, http://www.mct.gov.br/upd_blob/0000/439.pdf (accessed 4.27.15).

Corley, E.A.; Boardman, P.C.; Bozeman, B. (2006). Design and the management of ultiinstitutional research collaborations: Theoretical implications from two case studies, Research Policy 35, 975–993.

Coulon, F. (2005). The use of Social Network Analysis in Innovation Research: A literature review, [WWW Document] URL, http://www.druid.dk/conferences/winter2005/papers/dw2005-305.pdf. (accessed 4.27.15).

Da Silva, M.; Cupollilo, E.; Pirmez, C. (2011). Fiocruz microbial collections: the impact of biodiversity to public health. WFCC-Newsletter 51, 7-9.

Freeman, L.C. (1979). Centrality in Social Networks: Conceptual clarification. Social Networks 1, 215-239.

Gilsing, V.A.; Duysters, G.M. (2008). Understanding novelty creation in exploration networks—structural and relational embeddedness jointly considered, Technovation 28, 693–708.

Girvan, M.; Newman, M.E.J. (2002). Community structure in social and biological networks, PNAS 99, 7821-7826

Glanzel, W.; Schubert, A. (2004). Analyzing scientific networks through co-authorship. In: Moed, H.; Glanzel, W.; Schmoch, U., Handbook of Quantitative Science and Technology Research, Academic Publisher, Kluwer, pp. 257-276.

Håkansson, H.; Lundgren, A. (1995). Industrial networks and technological innovation. In Möller, K., Wilson, D., Business marketing: An interaction and network perspective, Kluwer Academic Publishers, Massachusetts, pp. 291-320.

Hanneman, R.A.; Riddle, M. (2005). Introduction to Social Network Methods. [WWW Document] URL, http://faculty.ucr.edu/~hanneman/nettext/ (accessed 4.27.15).

Holanda, P.; Cavalcanti E.; Borges, R.M.H.; Souza, W.S. (2012). Conformity Assessment for Biological Resource Centres (BRC): The Brazilian Approach. WFCC-Newsletter 52, 8-11.

Maggioni, M.A.; Nosvelli, M.; Uberti, T.E. (2007). Space versus networks in the geography of innovation: a European analysis, Papers in Regional Science 86, 471–493.

Maggioni, M.A.; Uberti, T.E. (2009). Knowledge networks across Europe: which distance matters?, The Annals of Regional Science 43, 691-720.

Morel, C.M.; Serruya, S.J.; Penna, G.O.; Guimarães R. (2009). Co-authorship network analysis: a powerful tool for strategic planning of research, development and capacity building programs on neglected diseases, PLoS Neglected Tropical Diseases 3, e501

NAGOYA PROTOCOL. (2011). [WWW Document] URL, www.cbd.int/abs/text/ (accessed 4.27.15).

Nambisan, S.; Sawhney, M. (2012). Inovação centrada em redes: quatro estratégias para explorar o cérebro global. In: Kleindorfer, P.R., Wind, Y.J., Gunther, R.E., O desafio das redes: estratégia, lucro e risco em um mundo interligado, Bookman, Porto Alegre.

Newman, M.E.J. (2000). Models of the small world, Journal of Statistical Physics 101, 819–841.

Newman, M.E.J. (2001). The structure of scientific collaboration networks, Proceedings of the National Academy of Sciences of the United States of America (PNAS) 98, 404–409.

Newman, M.E.J. (2004). Who is the best connected scientist? A study of scientific coauthorship networks, Lecture Notes in Physics 650, 337–370.

OCDE. (2001). Biological Resource Centers: underpinning the future of life sciences and biotechnology, [WWW Document] URL, http://www.oecd.org/science/biotech/2487422.pdf. (accessed 4.27.15).

Orsenigo, L.; Pammolli, F.; Riccaboni, M. (2001). Technological change and network dynamics: Lessons from the pharmaceutical industry, Research Policy 30, 485–508.

Peixto, A.L.; Barbosa, M.R.V.; Menezes, M.; Maia, L.C. (2006). Diretrizes e estratégias para amodernização de coleções biológicas brasileiras e a consolidação de sistemas integrados de informação sobre biodiversidade. Programa de Pesquisa em Biodiversidade, Ministério da Ciência e Tecnologia. [WWW Document] URL, http://www.cgee.org.br/atividades/redirect.php?idProduto=2655 (accessed 4.27.15).

Raesfeld, A.V.; Geurts, P.; Jansen, M. (2012). When is a network a nexus for innovation? A study of public nanotechnology R&D projects in the Netherlands, Industrial Marketing Management 41, 752–758.

SBM. (2006). Proposta de Consenso: Recomendações para Operação e Gerenciamento de Coleções de Culturas de Microrganismos, [WWW Document] URL, https://portal.fiocruz.br/sites/portal.fiocruz.br/files/documentos/sbmgerenciamentocolecoesculturas.pdf. (accessed 4.27.15).

Van der Valk, T.; Chappin, M.M.H.; Gijsbers, G.W. (2010). Evaluating innovation networks in emerging Technologies, Technological Forecasting & Social Change 78, 25–39.

Vazoller, R.F.; Canhos, V.P. (2005). Coleções de Culturas e Serviços e Centros de Recursos Biológicos. Nota Técnica, [WWW Document] URL, http://www.cria.org.br/cgee/documentos/crb.doc (accessed 4.27.15).

Wagner, C.S.; Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science, Research Policy 34 1608–1618.

Wasserman, S.; Faust, K. (1994). Social Network Analysis: methods and applications, Cambridge University Press, Cambrigde.

WFCC/WDCM. (2014). [WWW Document] URL, http://www.wfcc.info/ccinfo/statistics/ (accessed 4.27.15).

White, D.R.; Houseman, M. (2003). The Navigability of Strong Ties: Small Worlds, Tie Strength, and Network Topology: Self-organization in Strong-tie Small Worlds, Wiley Periodicals, Inc. 8, 72-81.

Downloads

Published

2016-05-26

Issue

Section

Articles